Turning indexable inserts FinishingMedium - RoughingMedium - RoughingFinishing - MediumRoughingRoughing ap (mm) 21°10°25° ap (mm) Medium - RoughingMedium - Roughing ap (mm)ap (mm) ap (mm) ap (mm) Introduction Chipbreaker selection - Negative inserts Stainless steel / heat-resistant alloys / titanium alloy B Name Design Advantages Name Design Advantages 23° 13° • Large rake angleMQ• Low cutting forceand good chipTK15°control • Smooth chipbreakergeometry improveschip flow with lessadhesion9°• Large curled chips 0.2512° 19° • Superior cuttingedge sharpness and strength achieved • Less cutting force by a positive land 14° due to large rake MS 0.25 • Extra strength STof cutting edge angle• Less notching by 19° inhibits damage special design 9° from wall shouldering 15° • Large rake angle reduces cutting force • Less burring MU achieved by 15° diminishing damage from notching Applicable chipbreaker range (ap indicates radius) (Stainless steel) (Heat-Resistant alloys) (Titanium alloys) 5 TK 4ST 4 TK 4 TK 3 3 MU 3 MU 2 MU2MQ 2 MQ MS 1 1 MS 1 MQ MS 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 f (mm/rev) f (mm/rev) f (mm/rev) Heat-resistant alloys (Heat-Resistant Alloys) (Heat-Resistant Alloys) 7 7 Name Design Advantages SQ(12) SX(12) 6 SQ(19) 6 SX(19) 5 5 • Effective for burr suppression and 4 4 SQ reducing notchingby slant cutting 3 3 SX(16) edge (inclined in (-) 2 SQ(16) 2 direction) 1 1 • Well-balanced edge 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 strength• Cutting force f (mm/rev) f (mm/rev) 0.55 reduction for stable SG machining at high- (Heat-Resistant Alloys)load cutting7 • Shallow and gentlycurved breaker 6 SG(19) controls chipssmoothly 5 SG(12) 4 SG(16) • Slant cutting edge 3 20° reduces cutting 2 SX force• Less burring 1 achieved by unique cutting edge design 0.1 0.2 0.3 0.4 0.5 f (mm/rev) B8